TY - CONF A1 - Gumenyuk, Andrey A1 - Petrovskiy, V.N. A1 - Rethmeier, Michael A1 - Shcheglov, Pavel A1 - Uspenskiy, S.A. T1 - Condensed metal particles influence during the high power fiber laser welding T2 - International Conference 'Lasers in Science, Technology, Medicine' - BMSTU & MNTORES Proceedings N2 - Different types of lasers are used nowadays for a number of technological Solutions, Modem high power solid-state lasers with high brightness of Radiation like Fiber or disc lasers find ever more applications in welding technology. Apart from the replacement of the CC>2-iasers traditionaHy used fcr these purposes, they provide new technological possibilities of metal treatment, such as using industrial robots and remote welding with high power laser radiation. The possibility of flexible optical fiber delivery of the radiation to any point gives a great technological advantage and permits welding processes to be realized with complicated weld seam geomelries and different positions using a minimum of additional fixtures. The short wavelength of the high power solid state lasers (1.07 ’m) causes another advantage. The coefflcient of inverse 170 Bremsstrahlung absorption from free electrons in plasma for such radiation is about 100 times lower than for the COi-iaser radiation. Owing to this fact, using the solid state lasers allows it to avoid a negative influence of the welding plume. However, a short wavelength can lead to another kind of laser Radiation attenuation, which is connected with the formation of a cloud consisting of small metal particles that absorb and scatter laser radiation. This cloud arises due to the condensation of hot metal vapor by flying out from the deep Penetration channel and broadening in relatively cold atmosphere over the metal Surface. Some theoretical and experimental approaches were made in advance in Order to estimate the influence of the Condensed particles on laser radiation and welding quality. In this paper a systematic study including the determination of the Cloud size and its dynamical characteristics is presented. The results were obtained within the scope of the first stage of the metal vapor condensation process Investigation during welding with high power fiber lasers. T2 - International Conference 'Lasers in Science, Technology, Medicine' CY - Moscow, Russia DA - 19.09.2011 PY - 2011 VL - 22 SP - 170 EP - 177 AN - OPUS4-29166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -