TY - CONF A1 - Nikoonasab, Ali A1 - Licht, M. A1 - Weiler, L. A1 - Achenbach, R. A1 - Raupach, M. A1 - Gluth, Gregor T1 - Pore Solution composition of GGBFS-containing cement pastes N2 - Ground Granulated Blast-Furnace Slag (GGBFS), a by-product of the iron-making process, has gained significant attention as a supplementary cementitious material and has become increasingly popular in recent years due to its remarkable properties. GGBFS can significantly reduce the environmental impact of cement production when it comes to building concrete structures. GGBFS can either be blended with ordinary Portland cement (OPC) (up to a 90% replacement), or it can be used in the production of alkali-activated materials (AAMs). However, a comprehensive understanding of the pore solution composition is necessary for understanding various aspects of cementitious materials and their durability, including corrosion behavior, passivation of steel, and resistance to deteriorative processes. In the present work, the pore solutions of seven different GGBFS-containing cements (alkali-activated slag, alkali-activated slag/fly ash blends, a hybrid alkaline cement, CEM III/C, and CEM III/B) were extracted and analysed by inductively coupled plasma-optical emission spectroscopy, ion chromatography, pH, redox potential, and conductivity measurements. For comparison, a Portland cement pore solution was analysed similarly. The Concentrations of reduced sulfur were noteworthy in all GGBFS-containing cements, particularly in alkali-activated cements, where concentrations were notably higher compared to standard cements. The redox potentials of the pore solutions were primarily dictated by the concentrations of reduced sulfur, although other factors may contribute. Additionally, sulfur species in the pore solutions had an impact on pH, electrical conductivity, and other properties pertinent to the corrosion of reinforcements. T2 - RILEM Spring Convention 2024 & Conference on Advanced Construction Materials and Processes for a Carbon Neutral Society CY - Milan, Italy DA - 10.04.2024 KW - GGBFS KW - AAM KW - Sulfide KW - Pore solution composition KW - Redox potential PY - 2024 AN - OPUS4-59960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -