TY - JOUR A1 - Chemello, Giovanni A1 - Knigge, Xenia A1 - Ciornii, Dmitri A1 - Reed, B.P. A1 - Pollard, A.J. A1 - Clifford, C.A. A1 - Howe, T. A1 - Vyas, N. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Influence of the Morphology on the Functionalization of Graphene Nanoplatelets Analyzed by Comparative Photoelectron Spectroscopy with Soft and Hard X-Rays JF - Advance Materials Interfaces N2 - Since its isolation, graphene has received growing attention from academia and industry due to its unique properties. However, the “what is my material” barrier hinders further commercialization. X-ray photoelectron spectroscopy (XPS) is considered as a method of choice for the determination of the elemental and chemical composition. In this work the influence of the morphology of graphene particles on the XPS results is studied and investigated as a function of X-ray energy, using conventional XPS with Al K𝜶 radiation and hard X-ray photoemission spectroscopy (HAXPES) using Cr K𝜶 radiation. Thereby, the information depth is varied between 10 and 30 nm. For this purpose, two commercial powders containing graphene nanoplatelets with lateral dimensions of either ≈100 nm or in the micrometer range are compared. These larger ones exist as stack of graphene layers which is inspected with scanning electron microscopy. Both kinds of particles are then functionalized with either oxygen or fluorine. The size of the graphene particles is found to influence the degree of functionalization. Only the combination of XPS and HAXPES allows to detect the functionalization at the outermost surface of the particles or even of the stacks and to provide new insights into the functionalization process. KW - Functionalized graphene KW - Hard-energy X-ray photoelectron spectroscopy KW - X-ray photoelectron spectroscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578860 DO - https://doi.org/10.1002/admi.202300116 SN - 2196-7350 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-57886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -