TY - CONF A1 - Vahlsing, Thorsten A1 - Raum, Hanne A1 - Casperson, Ralf A1 - Pohl, Rainer A1 - Heckel, Thomas A1 - Beilken, D. A1 - Dilz, K. A1 - Rühe, S. T1 - FE-simulation of eddy current signals produced from basic model cracks for running surface rail defects T2 - Proceedings of Railway Engineering 2019 N2 - Non-destructive testing for surface crack detection and head check depth quantification at the gauge corner of railway tracks can be achieved using eddy current methods. With the extension of the tested zone to the running surface, rail defect signal types other than head checks can be measured. Due to their mostly irregular shape, a quantitation based on a calibration against regular test cracks of varying depth may not be linear. Estimates of the expected influence of more complex crack patterns may be obtained by a finite element simulation of sufficiently simple limiting cases, like two displaced or intersecting cracks or a simply branched or flexed crack. As a first step, a 3D finite element model of the HC10 eddy current probe distributed by Prüftechnik Linke und Rühe (PLR), Germany was built and verified against measured results from an (easily fabricated) reference block with isolated long cracks. T2 - 15th Railway Engineering Conference CY - Edinburgh, UK DA - 03.07.2019 KW - Finite element analysis KW - Eddy current testing KW - Rail inspection PY - 2019 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/48529 AN - OPUS4-48529 SP - 1 EP - 11 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany