TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Rahman, Mehbub-Ur A1 - Chinta, P.K. A1 - Boehm, Rainer A1 - Prager, Jens ED - Linde, B. B. J. ED - Paczkowski, J. ED - Ponikwicki, N. T1 - Simulation of ultrasonic fields in anisotropic materials using 2D ray tracing method T2 - International congress on ultrasonics N2 - Ultrasound propagation in inhomogeneous anisotropic materials is difficult to examine because of the directional dependency of elastic properties. Simulation tools play an important role in developing advanced reliable ultrasonic testing techniques for the inspection of anisotropic materials particularly austenitic cladded materials and dissimilar welds. A 2-D Ray tracing method is developed for evaluating ray path, amplitude and travel time for three wave modes namely quasi longitudinal wave (qP), quasi shear vertical wave (qSV) and shear horizontal waves (SH) in anisotropic materials such as austenitic cladded materials. The inhomogenity in the anisotropic material is represented by discretizing the anisotropic region into several homogeneous layers. The ray paths are traced during its propagation through the various interfaces between those layers. At each interface the problem of reflection and refraction is solved. The ray amplitudes are computed by taking into account the directivity and phase relations. Ray divergence variation and ray transmission coefficients at each refraction boundary are considered. The Ray tracing results for ultrasonic field profiles in austenitic cladded materials are validated quantitatively by 2-D Elastodynamic Finite Integration Technique (EFIT) results and by the experiments. T2 - International congress on ultrasonics CY - Gdansk, Poland DA - 2011-09-05 KW - Ray path KW - Energy vector KW - Austenitic cladded material KW - Ultrasonic beam profile PY - 2012 SN - 978-0-7354-1019-0 DO - https://doi.org/10.1063/1.3703288 SN - 0094-243X N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings IS - 1433 SP - 743 EP - 746 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-26207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -