TY - JOUR A1 - Sproesser, G. A1 - Chang, Y.-J. A1 - Pittner, Andreas A1 - Finkbeiner, M. A1 - Rethmeier, Michael T1 - Energy efficiency and environmental impacts of high power gas metal arc welding JF - The International Journal of Advanced Manufacturing Technology N2 - Single-wire gas metal arc welding (SGMAW) and high power tandem GMAW (TGMAW) are evaluated with respect to energy efficiency. The key performance indicator electrical deposition efficiency is applied to reflect the energy efficiency of GMAW in different material transfer modes. Additionally, the wall-plug efficiency of the equipment is determined in order to identify the overall energy consumption. The results show that energy efficiency can be increased by 24% and welding time is reduced over 50% by application of the tandem processes. A comparative life cycle assessment of a 30-mm-thick weld is conducted to investigate the influences of the energy efficiency on the environmental impacts. The environmental impacts on the categories global warming potential, acidification potential, eutrophication potential, and photochemical ozone creation potential can be reduced up to 11% using an energy-efficient TGMAW process. KW - Tandem gas metal arc welding KW - Life cycle assessment (LCA) KW - Energy efficiency KW - High power welding PY - 2017 DO - https://doi.org/10.1007/s00170-017-9996-7 SN - 0268-3768 SN - 1433-3015 VL - 91 IS - 9-12 SP - 3503 EP - 3513 PB - Springer CY - London AN - OPUS4-39564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -