TY - CONF A1 - Pfennig, Anja A1 - Linke, B. A1 - Schulze, S. A1 - Kranzmann, Axel T1 - Corrosion in pipe steels exposed to supercritical CO2 during carbon capture and storage CCS T2 - EUROCORR 2011 - Developing solutions for the global challenge N2 - The CCS technique involves the compression of emission gasses in deep geological layers. To guarantee the safety of the site, CO2-corrosion of the injection pipe steels has to be given special attention when engineering CCS-sites. To get to know the corrosion behaviour samples of the heat treated steel 1.72252CrMo4, used for casing, and the stainless injection-pipe steel 1.4034 X46Cr13 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CC 2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. The isothermal corrosion behaviour obtained by mass gain of the steels in the gas phase, the liquid phase and the intermediate phase gives surface corrosion rates around 0.1 to 0.8 mm/year at ambient pressure and much lower about 0.02 to 0.2 mm/year at 100 bar where the CO 2 is in its supercritical state. Severe pit corrosion with pit heights around 4.5 mm are only located on the 42CrMo4 steel. Main phase of the continuous complicated multi-layered carbonate/oxide structure is siderite FeCO 3 in both types of steel. T2 - EUROCORR 2011 - Developing solutions for the global challenge CY - Stockholm, Sweden DA - 04.09.2011 KW - Steel KW - Pipeline KW - Corrosion KW - Carbonate layer KW - CCS KW - CO2-storage PY - 2011 SP - Paper 1044-1 EP - Paper 1044-8 AN - OPUS4-28008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -