TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Reliability of pipe steels with different amounts of C and Cr during onshore carbon dioxide injection JF - International journal of greenhouse gas control N2 - During the compression of emission gasses into deep geological layers (Carbon Dioxide Capture and Storage, CCS) CO2-corrosion will become a relevant safety issue. The reliability of the steels used at a geological onshore CCS-site in the Northern German Bassin 42CrMo4 (1.7225, AISI 4140) used for casing, and the injection pipe steels X46Cr13 (1.4034, AISI 420 C), X20Cr13 (1.4021, AISI 420 J) as well as X35CrMo17 (1.4122) is demonstrated in laboratory experiments. Samples were kept in a synthetic aquifer environment at T = 60 °C. This corrosive environment is then saturated with technical CO2 at a flow rate of 3 l/h. Microstructures were characterized by X-ray diffraction, light microscopy, scanning electron microscopy, and energy dispersive X-ray analysis, after a series of heat treatments (700 h to 2 years). The non-linear isothermal surface corrosion behaviour of the steels reveals surface corrosion rates around 0.1–0.8 mm/year, when obtained by mass gain. Severe pit corrosion (pit heights ca. 4.5 mm) are only located on the injection pipe steels. Main phases of the continuous scales are siderite FeCO3 and goethite α-FeOOH. The formation of the non-protective layer is likely to form via a transient Fe(OH)2-phase. KW - Steel KW - Pipe KW - Corrosion KW - Carbonate layer KW - CO2-injection KW - CO2-storage CCS PY - 2011 DO - https://doi.org/10.1016/j.ijggc.2011.03.006 SN - 1750-5836 VL - 5 IS - 4 SP - 757 EP - 769 PB - Elsevier CY - New York, NY [u.a.] AN - OPUS4-25533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -