TY - JOUR A1 - Würth, Christian A1 - Grabolle, Markus A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Resch-Genger, Ute T1 - Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields JF - Analytical chemistry N2 - The photoluminescence quantum yield (Φf) that presents a direct measure for the efficiency of the conversion of absorbed photons into emitted photons is one of the spectroscopic key parameters of functional fluorophores. It determines the suitability of such materials for applications in, for example, (bio)analysis, biosensing, and fluorescence imaging as well as as active components in optical devices. The reborn interest in accurate Φf measurements in conjunction with the controversial reliability of reported Φf values of many common organic dyes encouraged us to compare two relative and one absolute fluorometric method for the determination of the fluorescence quantum yields of quinine sulfate dihydrate, coumarin 153, fluorescein, rhodamine 6G, and rhodamine 101. The relative methods include the use of a chain of Φf transfer standards consisting of several 'standard dye' versus 'reference dye' pairs linked to a golden Φf standard that covers the ultraviolet and visible spectral region, and the use of different excitation wavelengths for standard and sample, respectively. Based upon these measurements and the calibration of the instruments employed, complete uncertainty budgets for the resulting Φf values are derived for each method, thereby providing evaluated standard operation procedures for Φf measurements and, simultaneously, a set of assessed Φf standards. KW - Fluorescence KW - Photoluminescence KW - Quantum yield KW - Dye KW - Uncertainty KW - Absolute quantum yield KW - Method comparison KW - Integrating sphere PY - 2011 DO - https://doi.org/10.1021/ac2000303 SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 9 SP - 3431 EP - 3439 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -