TY - JOUR A1 - Demidov, Alexandr A1 - Eschlböck-Fuchs, S. A1 - Kazakov, Alexander Ya. A1 - Gornushkin, Igor B. A1 - Kolmhofer, P. J. A1 - Pedarnig, J. D. A1 - Huber, N. A1 - Heitz, J. A1 - Schmid, Thomas A1 - Rössler, R. A1 - Panne, Ulrich T1 - Monte Carlo standardless approach for laser induced breakdown spectroscopy based on massive parallel graphic processing unit computing T2 - Spectrochimica Acta B N2 - The improved Monte-Carlo (MC) method for standard-less analysis in laser induced breakdown spectroscopy (LIBS) is presented. Concentrations in MC LIBS are found by fitting model-generated synthetic spectra to experimental spectra. The current version of MC LIBS is based on the graphic processing unit (GPU) computation and reduces the analysis time down to several seconds per spectrum/sample. The previous version of MC LIBS which was based on the central processing unit (CPU) computation requested unacceptably long analysis times of 10's minutes per spectrum/sample. The reduction of the computational time is achieved through the massively parallel computing on the GPU which embeds thousands of co-processors. It is shown that the number of iterations on the GPU exceeds that on the CPU by a factor > 1000 for the 5-dimentional parameter space and yet requires > 10-fold shorter computational time. The improved GPU-MC LIBS outperforms the CPU-MS LIBS in terms of accuracy, precision, and analysis time. The performance is tested on LIBS-spectra obtained from pelletized powders of metal oxides consisting of CaO, Fe2O3, MgO, and TiO2 that simulated by-products of steel industry, steel slags. It is demonstrated that GPU-based MC LIBS is capable of rapid multi-element analysis with relative error between 1 and 10's percent that is sufficient for industrial applications (e.g. steel slag analysis). The results of the improved GPU-based MC LIBS are positively compared to that of the CPU-based MC LIBS as well as to the results of the standard calibration-free (CF) LIBS based on the Boltzmann plot method. PB - Elsevier B.V. KW - Monte Carlo simulation KW - Parallel computing KW - Calibration-free laser-induced breakdown spectroscopy KW - Post-breakdown laser induced plasma KW - Quaternary oxides PY - 2016 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/38489 AN - OPUS4-38489 VL - 125 SP - 97 EP - 102 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany