TY - JOUR A1 - Gornushkin, Igor B. A1 - Smith, B.W. A1 - Panne, Ulrich A1 - Omenetto, N. T1 - Laser-induced breakdown spectroscopy combined with spatial heterodyne spectroscopy T2 - Applied spectroscopy N2 - A spatial heterodyne spectrometer (SHS) is tested for the first time in combination with laser-induced breakdown spectroscopy (LIBS). The spectrometer is a modified version of the Michelson interferometer in which mirrors are replaced by diffraction gratings. The SHS contains no moving parts and the gratings are fixed at equal distances from the beam splitter. The main advantage is high throughput, about 200 times higher than that of dispersive spectrometers used in LIBS. This makes LIBS-SHS a promising technique for low-light standoff applications. The output signal of the SHS is an interferogram that is Fourier-transformed to retrieve the original plasma spectrum. In this proof-of-principle study, we investigate the potential of LIBS-SHS for material classification and quantitative analysis. Brass standards with broadly varying concentrations of Cu and Zn were tested. Classification via principal component analysis (PCA) shows distinct groupings of materials according to their origin. The quantification via partial least squares regression (PLS) shows good precision (relative standard deviation , 10%) and accuracy (within 6 5% of nominal concentrations). It is possible that LIBS-SHS can be developed into a portable, inexpensive, rugged instrument for field applications. PB - Society for Applied Spectroscopy CY - Frederick, Md. KW - Spatial heterodyne spectroscopy KW - Laser-induced breakdown spectroscopy KW - Fourier transform spectroscopy KW - LIBS KW - Laser-induced plasma KW - Interferometry PY - 2014 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/32163 AN - OPUS4-32163 SN - 0003-7028 SN - 1943-3530 VL - 68 IS - 9 SP - 1076 EP - 1084 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany