TY - CONF A1 - Qiao, Linan A1 - Zencker, Uwe A1 - Wille, Frank A1 - Musolff, André T1 - Numerical simulation of 9 meter drop of a transport and storage cask with aluminium impact limiter T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials (Proceedings) N2 - For the purpose of numerical simulation of 9 meter drop of a transport and storage cask with aluminium impact limiter, an elastic-incremental plastic material model with strain rate hardening acc. to Cowper-Symonds is used for the development of isothermal as well as adiabatic stress-strain relations of aluminium from the compression test at constant ambient temperature. After that, two different simulation strategies are compared. At first, the drop test is calculated fully coupled, i.e. with isothermal stress-strain relations and possible heat generation in the material. Then the drop test is recalculated in a very simplified manner with adiabatic stress-strain relations from the compression test in an isothermal simulation. Both calculation strategies show similar results in the investigated load scenario. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Drop test KW - Spent fuel transport cask KW - Finite element calculation KW - Dynamic simulation KW - Impact limiter KW - Aluminium PY - 2010 SP - 1-8 (Monday-T16-117) AN - OPUS4-23707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -