TY - JOUR A1 - Velencoso, M. M. A1 - Battig, Alexander A1 - Markwart, J. C. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - Molecular firefighting – How modern phosphorus chemistry can help solve the challenge of flame retardancy JF - Angewandte Chemie Int. Ed. N2 - The ubiquity of polymeric materials in daily life Comes with an increased fire risk, and sustained research into efficient flame retardants is key to ensuring the safety of the populace and material goods from accidental fires. Phosphorus, a versatile and effective element for use in flame retardants, has the potential to supersede the halogenated variants that are still widely used today: current formulations employ a variety of modes of action and methods of implementation, as additives or as reactants, to solve the task of developing flameretarding polymeric materials. Phosphorus-based flame retardants can act in both the gas and condensed phase during a fire. This Review investigates how current phosphorus chemistry helps in reducing the flammability of polymers, and addresses the future of sustainable, efficient, and safe phosphorus-based flame-retardants from renewable sources. KW - Flame retardant KW - Phosphorus KW - Halogen-free PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457009 DO - https://doi.org/10.1002/anie.201711735 SN - 1433-7851 SN - 1521-3773 VL - 57 IS - 33 SP - 10450 EP - 10467 PB - Wiley VHC AN - OPUS4-45700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -