TY - JOUR A1 - Winkel, A. A1 - Meszaros, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Travitzky, N. A1 - Fey, T. A1 - Greil, P. A1 - Wondraczek, L. T1 - Sintering of 3D-printed glass/HAp composites JF - Journal of the American ceramic society N2 - We report the sintering of 3D-printed composites of 13-93 bioactive glass and hydroxyapatite (HAp) powders. The sintering process is characterized on conventionally produced powder compacts with varying HAp content. A numeric approximation of the densification kinetics is then obtained on the basis of Frenkel, Mackenzie–Shuttleworth, and Einstein–Roscoe models, and optimized sintering conditions for 3D-printed structures are derived. Fully isotropic sintering of complex cellular composites is obtained by continuous heating to 750°C at a rate of 2 K/min for a HAp content of 40 wt%. The approach can readily be generalized for printing and sintering of similar glass-ceramic composites. KW - Sintering glass composit bio material PY - 2012 DO - https://doi.org/10.1111/j.1551-2916.2012.05368.x SN - 0002-7820 SN - 1551-2916 VL - 95 IS - 11 SP - 3387 EP - 3393 PB - Blackwell Publishing CY - Malden AN - OPUS4-27053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -