TY - JOUR A1 - Nohr, Michael A1 - Horn, Wolfgang A1 - Wiegner, Katharina A1 - Richter, Matthias A1 - Lorenz, W. T1 - Development of a material with reproducible emission of selected volatile organic compounds - mu-chamber study JF - Chemosphere N2 - Volatile organic compounds (VOCs) found indoors have the potential to affect human health. Typical sources include building materials, furnishings, cleaning agents, etc. To address this risk, chemical emission testing is used to assess the potential of different materials to pollute indoor air. One objective of the European Joint Research Project 'MACPoll' (Metrology for Chemical Pollutants in Air) aims at developing and testing a reference material for the quality control of the emission testing procedure. Furthermore, it would enable comparison of measurement results between test laboratories. The heterogeneity of the majority of materials makes it difficult to find a suitable reference sample. In the present study, styrene, 2-ethyl-1-hexanol, N-methyl-α-pyrrolidone, lindane, n-hexadecane, 1,2-dimethyl- and 1,2-di-n-butyl-phthalate were added to 12 commercially available lacquers (6 alkyd and 6 acrylic polymer based lacquers) serving as carrier substrate. After homogenization, the mixtures were loaded into a Markes Micro-Chamber/Thermal Extractor (µ-CTE™) for curing and investigation of the emission behavior for each compound. For almost all of the investigated chemicals, the preferred glossy acrylic lacquer showed emissions that were reproducible with a variation of less than 20% RSD. Such lacquer systems have therefore been shown to be good candidates for use as reference materials in inter-laboratory studies. KW - VOC KW - Reference material KW - Emission testing KW - Indoor air KW - Inter-laboratory study PY - 2014 DO - https://doi.org/10.1016/j.chemosphere.2013.12.047 SN - 0045-6535 SN - 0366-7111 VL - 107 SP - 224 EP - 229 PB - Elsevier Science CY - Kidlington, Oxford AN - OPUS4-30816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -