TY - JOUR A1 - Hüllmann, Dino A1 - Paul, Niels A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Lilienthal, A. J. ED - Eberhardsteiner, J. ED - Růžička, M. ED - Cosmi, F. T1 - Measuring rotor speed for wind vector estimation on multirotor aircraft JF - Materials Today: Proceedings N2 - For several applications involving multirotor aircraft, it is crucial to know both the direction and speed of the ambient wind. In this paper, an approach to wind vector estimation based on an equilibrium of the principal forces acting on the aircraft is shown. As the thrust force generated by the rotors depends on their rotational speed, a sensor to measure this quantity is required. Two concepts for such a sensor are presented: One is based on tapping the signal carrying the speed setpoint for the motor controllers, the other one uses phototransistors placed underneath the rotor blades. While some complications were encountered with the first approach, the second yields accurate measurement data. This is shown by an experiment comparing the proposed speed sensor to a commercial non-contact tachometer. T2 - 34th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Trieste, Italy DA - 19.09.2017 KW - Wind vector estimation KW - Rotor speed KW - UAV KW - Tachometer PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S2214785318321114 DO - https://doi.org/10.1016/j.matpr.2018.08.139 SN - 2214-7853 VL - 5 IS - 13 SP - 26703 EP - 26708 PB - Elsevier CY - Amsterdam, Netherlands AN - OPUS4-47097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -