TY - JOUR A1 - Lange, Nele A1 - Dietrich, Paul M. A1 - Lippitz, Andreas A1 - Kulak, N. A1 - Unger, Wolfgang T1 - New azidation methods for the functionalization of silicon nitride and application in copper-catalyzed azide-alkyne cycloaddition (CuAAC) T2 - ECASIA special issue paper N2 - In this study, a new direct functionalization method of silicon nitride (Si3N4) using azidation and click chemistry is presented. First, amino groups (NHx) were created on a Si3N4 substrate by fluoride etching. These NHx-terminated Si3N4 surfaces were analyzed by chemical derivatization X-ray photoelectron spectroscopy (CD-XPS) with 4-trifluoromethylbenzaldehyde (TFBA) and a derivatization yield of 20% was concluded. In the second step freshly prepared NHx surfaces were transformed into azides which were used immediately in a click reaction with halogenated alkynes. The presented combination of amination, azidation and click reaction is a promising alternative for common silane-based Si3N4 functionalization methods. PB - John Wiley & Sons, Ltd T2 - 16th European Conference on Applications of Surface and Interface Analysis CY - Granada, Spain DA - 28.09.2015 KW - XPS KW - Azidation KW - Click chemistry KW - Silicon nitride KW - Chemical derivatization PY - 2016 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/36841 AN - OPUS4-36841 UR - http://onlinelibrary.wiley.com/doi/10.1002/sia.5950/full VL - 48 SP - 621 EP - 625 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany