TY - JOUR A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - In situ phase characterization of low transformation temperature (LTT) alloy by means of synchrotron diffraction JF - Materialovedenie : naucno-techniceskij i proizvodstvennyj zurnal = Materials sciences transactions N2 - Cold cracking resistance is a relevant evaluation criterion for welded joints and affected by residual stresses which result from the welding procedure. Compressive residual stresses can thereby have a positive influence on preventing cracking. A unique possibility of generating compressive residual stresses already during the welding procedure is offered by the socalled Low Transformation Temperature (LTT) filler wires. Compared to conventional wires, these materials show decreased phase transformation temperatures which can work against the cooling-specific contraction. In consequence, distinct compressive residual stresses can be observed within the weld and adjacent areas. The strength of these fillers makes them potentially applicable to high-strength steel welding. Investigations were carried out to determine the phase transformation behaviour of different LTT-filler materials. Transformation temperatures were identified using Single Sensor Differential Thermal Analysis (SS-DTA). Additionally Synchrotron radiation was used to measure the transformation kinetics of all involved crystalline phases during heating and cooling of a simulated weld thermal cycle. KW - In-situ phase analysis KW - Energy dispersive diffraction KW - Phase transformation PY - 2010 SN - 1684-579X VL - 5 IS - 158 SP - 17 EP - 23 PB - Izdat. Masinostroenie CY - Moskva, Russia AN - OPUS4-21829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -