TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Engineering approach to assess residual stresses in welded components JF - Welding in the World N2 - Present trends to lightweight design lead to an expanding relevance of high-strength fine-grained structural steels especially in mobile crane constructions. With growing material strength, the challenge for welding fabrication increases, since high loading capacities and safety requirements have to be accomplished. The utilisation of the high strength potential often requires complex constructions associated with high restraint conditions while welding. Increased residual stresses may occur due to superimposing reaction and restraint stresses, which have to be quantified and evaluated to ensure the safety and integrity of high-strength steel constructions. Particularly, the scope of residual stresses has to be taken into account for different effects in the HAZ, notches, weld and base metal. Commonly, conservative assumptions of residual stresses lead to distinct underestimations of the load bearing capacity particularly for welded high-strength steel constructions. This study concludes results of recent works of the researchers regarding the complex interaction among heat control, material and restraint intensity on the residual stress state in welded components. These analyses are extended by further experiments. Based on the obtained major effects, an approach for a welding residual stress assessment regarding component design according to prevailing standards for crane construction, an important application for high-strength steels, is presented. KW - Process parameters KW - Residual stresses KW - MAG welding KW - Restraint KW - High-strength steels PY - 2017 DO - https://doi.org/10.1007/s40194-016-0394-9 SN - 0043-2288 SN - 1878-6669 VL - 91 IS - 1 SP - 91 EP - 106 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-39044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -