TY - JOUR A1 - Abbas, Z. A1 - Gabel, D. A1 - Krietsch, Arne A1 - Krause, U. T1 - Quasi-static dispersion of dusts for the determination of lower explosion limits of hybrid mixtures JF - Jounal of Loss Prevention in the Process Industries N2 - Knowledge of explosion limiting concentration of explosible materials is necessary forthe design of explosion protection measures. Currently employed methods of testing MEC of a dust cloud or LEL of a hybrid mixture are based on arbitrary assumptionsand possess technical limitations that often lead to values of MEC/LEL, which are unrealistically low or poorly reproducible. This contribution presents an improved method for experimental determination of MEC of a combustible dust cloud or LEL of a flammable gas or hybrid mixture. The new setup operates under laminar conditions and allows a uniform suspension of dust particles in an open top acrylic glass tube. Dust concentration is measured with the help of infrared sensors installed a few centimeters above and below the ignition source. In order to evaluate the dependence of MEC on flow front velocity, MEC of lycopodium was determined at four flow velocities. The results show that the flow field intensity does not significantly influence the MEC of lycopodium for the flow ranges tested in this work. Moreover, LEL of hybrid mixtures of lycopodium and methane was also tested at flow velocities of 4.7 cm/s, 5.8 cm/s, 7 cm/s and 11 cm/s and compared with the values obtained from other sources. The results suggest that the requirement of high energy pyrotechnical igniter may be relinquished, provided that a truly homogeneous suspension of dust particles could be achieved. Moreover, the effect of relative amount of dust and gas, on the course of ignition and flame propagation in hybrid mixtures at their LEL, was studied by the help of high speed videos. For hybrid mixtures of carbonaceous dusts (like lycopodium) at their LEL, ignition occurs in the gas phase, however, flame propagation is only possible through a two-way interaction of dust and gas during the course of combustion. KW - Dust explosions KW - Gas explosions KW - Lower explosion limit KW - Hybrid mixtures PY - 2022 DO - https://doi.org/10.1016/j.jlp.2021.104640 SN - 0950-4230 VL - 74 SP - 1 EP - 18 PB - Elsevier Ltd. AN - OPUS4-54077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -