TY - GEN A1 - Kautek, Wolfgang A1 - Sorg, N. A1 - Krüger, Jörg ED - Brieger, M. T1 - Optical second-harmonic generation (SHG) on semiconductor electrodes by means of femtosecond and nanosecond-pulse lasers T2 - Semiconductor processing and characterization with lasers N2 - In situ optical second-harmonic generation (SHG) on centrosymmetric crystalline semiconductor electrodes opens up a new field of in situ investigations of hurried solid state interfaces and metal front contacts relevant to electronic and photovoltaic devices, which are rarely accessible by other methods. Photoelectrochemical nanosecond- and femtosecond-pulse laser investigations of silicon (111) electrodes show that in situ SHG is feasible in such complex interfacial systems. In a p-p polarization configuration, the azimuthal dependence of the SHG from oxide-covered and bare n-Si (111) electrodes, with and without Ni contact deposits, have been studied. Etching and regrowth of silicon oxides as well as burried interfacial electric field distributions were monitored. In situ SHG is shown to be extremely sensitive to trapped interfacial charge, crystal misorientations and surface step arrays. An advantage of femtosecond-pulses is the fact that illumination fluences that are well below the damage threshold, but still with sufficient power density, can be applied. (Author) T2 - 1st International Symposium on Semiconductor Processing and Characterization with Lasers - Applications in Photovoltaics CY - Stuttgart, Germany DA - 1994-04-18 KW - Femtosecond-Pulse Laser KW - Sub-Picosecond-Pulse Laser KW - Semiconductors KW - Silicon KW - Second-Harmonic Generation KW - SHG KW - Nonlinear Electroreflectance KW - Etch Process KW - Oxide KW - Interfacial Electronic States KW - Fermi-Level Pinning KW - MOS Diode PY - 1995 SN - 0-87849-683-1 DO - https://doi.org/10.4028/www.scientific.net/MSF.173-174.285 SN - 0255-5476 N1 - Serientitel: Materials science forum – Series title: Materials science forum IS - 173/174 SP - 285 EP - 290 PB - Trans Tech Publ. CY - Aedermannsdorf AN - OPUS4-11672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -