TY - CONF A1 - Krüger, Jörg T1 - Production of micro solar cells using femtosecond laser pulses N2 - A promising technology in photovoltaics is based on micro-concentrator solar cells, where the photovoltaic active area is realized as an array of sub-millimeter sized thin-film solar cells. For copper-indium-gallium-diselenide (CIGSe), the solar cells can be arranged in the foci of a regular arrangement of micro-lenses to enhance their efficiency by light concentration, to allow a better heat dissipation and to save expensive raw material (indium). Different approaches to produce micro-sized precursors of CIGSe absorbers on molybdenum are presented using 30-fs laser pulses at 790 nm wavelength. On the one hand, a multi pulse surface structuring of the molybdenum or the underlying glass substrate and a subsequent physical vapor deposition (PVD) process were used for a site-selective aggregation of indium droplets. On the other hand, a single pulse laser-induced forward transfer (LIFT) was utilized to selectively deposit combined copper/indium/gallium precursor pixels on the molybdenum back contact of the solar cell. It was demonstrated that a postprocessing (selenization, isolation, contacting) of the laser-generated micro-sized precursors results in an array of working CIGSe solar cells with an efficiency of 2.8% for 1 sun illumination. T2 - 15th Erwin Schrödinger Colloquium 2017 CY - Vienna, Austria DA - 01.12.2017 KW - Solar cell KW - Micro-concentrator KW - Copper-indium-gallium-diselenide (CIGSe) KW - Femtosecond laser KW - Laser-induced forward transfer (LIFT) PY - 2017 AN - OPUS4-43338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -