TY - JOUR A1 - v. Woedtke, T. A1 - Abel, P. A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Subpicosecond-pulse laser microstructuring for enhanced reproducibility of biosensors JF - Sensors and actuators B: Chemical N2 - Curved substrates can be micro-structured by laser ablation, which is not possible with standard lithographic methods. The novel femtosecond-pulse laser technique allows the production of defined and reproducible micro-perforations of originally analyte-impermeable membranes. The trans-membrane analyte flux can be controlled both by the variation of the laser focus diameter resulting in different areas of single perforations, and the number of perforations in arrays on small membrane areas. This leads to a higher degree of variability as well as reproducibility of the diffusion qualities of sensor membranes, and marks the main innovation with this technique compared to the hand-made mechanical perforation by specially grinded needles used up to now. Touchless micro-perforation of small membrane areas with negligible heat damage of the structures adjacent to the perforation allows the application of ‘analyte door’ membranes directly onto curved surfaces of miniaturized needle-sensors assigned for in vivo glucose monitoring, for the first time. KW - Biosensor KW - Glucose KW - Membrane perforation KW - Subpicosecond laser ablation KW - Reproducibility PY - 1997 DO - https://doi.org/10.1016/S0925-4005(97)80330-9 SN - 0925-4005 SN - 1873-3077 VL - 42 IS - 3 SP - 151 EP - 156 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-11513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -