TY - CONF A1 - Kowitz, Astrid A1 - Wu, Cheng-Chieh A1 - Hille, Falk A1 - Helmerich, Rosemarie A1 - Kadoke, Daniel A1 - Gründer, Klaus-Peter A1 - Hauser, S. A1 - Schwarzinger, H. A2 - Pastramă, Ş. D. A2 - Constantinescu, D. M. T1 - Impact on a micro-reinforced UHPC: Experimental studies versus numerical modeling T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics, Extended Abstracts N2 - Within the presented research project, experimental and numerical investigations were performed to develop a thin-shelled, modular, mobile element system made of a micro-reinforced ultra-high-performance ductile concrete (DUCON®). Material parameters were experimentally determined to adapt the material model within the numerical analysis applying the Drucker-Prager relationship. Afterwards, for validation of the numerical models, quasi-static and high-velocity impact tests were performed on plate-like structures. Finally, a suitable geometry of transportable barrier elements will be designed, which provides a maximum of resistance against impact by a minimum of weight and a maximum of mobility. PB - Editura Printech CY - Bucarest, Romania T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - E-modulus KW - Impact KW - UHPC KW - DUCON® KW - Quasi-static and dynamic tests KW - Micro-reinforcement KW - Ductility KW - Mobile elements KW - Numerical modeling KW - Stereo photogrammetry KW - Compressive strength PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/47001 AN - OPUS4-47001 UR - https://www.das2018.ro/ SN - 978-606-23-0874-2 SP - 11 EP - 12 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany