TY - GEN A1 - Tiebe, Carlo A1 - Gawlitza, Kornelia T1 - Gas standards for the calibration of novel fluorescence sensors for ammonia N2 - Ammonia and its conversion product ammonium have a strong negative impact on human health and ecosystems. Most ammonia measurements in ambient air are performed in the molar fraction range (0.5 to 500) nmol/mol. There is a need for reliable traceable ammonia gas standards as well as in situ analytical procedures for the monitoring of ammonia in ambient air. The permeation method is an effective tool for dynamically generating precise gas standards with a low uncertainty in the concentration range of a few nmol/mol to several µmol/mol in an inert carrier gas, e. g. pure nitrogen or purified ambient air. Here, we present our ammonia gas standard generator as well as results of the characterisation of its individual components supporting the uncertainty assessment according to GUM for stable gas concentrations in this range. In order to detect ammonia in the nmol/mol-range, a suitable sensor has to be developed. In this contribution, we therefore additionally present first approaches on the development of such a sensor using optical fluorescence as transduction mechanism due to its intrinsically high sensitivity and high spatial resolution. Incorporation of a fluorescent dye, which shows fluorescence enhancement in the presence of ammonia, into a polymer matrix allows to reversibly recognize low amounts of ammonia. It can be concluded that fluorescence sensor is a robust tool for measurements of ammonia; however it needs calibration for the planed use. T2 - MetNH3-workshop on the progress in ammonia metrology CY - Braunschweig, Germany DA - 24.02.2016 KW - Ammonia KW - Fluorescence sensor KW - Permeation KW - Test gas generation PY - 2016 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/35810 AN - OPUS4-35810 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany