TY - CONF A1 - Hornemann, A. A1 - Eichert, D. A1 - Flemig, Sabine A1 - Hoehl, A. A1 - Ulm, G. A1 - Beckhoff, B. A2 - Shen, Q. A2 - Nelson, C. T1 - Probing biolabels for high throughput biosensing via synchrotron radiation SEIRA technique T2 - AIP Conference N2 - Bio-diagnostic assays of high complexity rely on nanoscaled assay recognition elements that can provide unique selectivity and design-enhanced sensitivity features. High throughput performance requires the simultaneous detection of various analytes combined with appropriate bioassay components. Nanoparticle induced sensitivity enhancement, and subsequent multiplexed capability Surface-Enhanced InfraRed Absorption (SEIRA) assay formats are fitting well these purposes. SEIRA constitutes an ideal platform to isolate the vibrational signatures of targeted bioassay and active molecules. The potential of several targeted biolabels, here fluorophore-labeled antibody conjugates, chemisorbed onto low-cost biocompatible gold nano-aggregates substrates have been explored for their use in assay platforms. Dried films were analyzed by synchrotron radiation based FTIR/SEIRA spectro-microscopy and the resulting complex hyperspectral datasets were submitted to automated statistical analysis, namely Principal Components Analysis (PCA). The relationships between molecular fingerprints were put in evidence to highlight their spectral discrimination capabilities. We demonstrate that robust spectral encoding via SEIRA fingerprints opens up new opportunities for fast, reliable and multiplexed high-end screening not only in biodiagnostics but also in vitro biochemical imaging. PB - AIP Conference Proceedings T2 - 12th International Conference on Synchrotron Radiation Instrumentation (SRI) CY - New York, NY, USA DA - 06.07.2015 KW - Biolabels KW - High throughput biosensing KW - Synchrotron radiation KW - SEIRA Technique PY - 2016 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/40113 AN - OPUS4-40113 VL - 1741 SP - Article Number: 050007 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany