TY - JOUR A1 - Arakawa, Akihiro A1 - Jakubowski, Norbert A1 - Koellensperger, G. A1 - Theiner, S. A1 - Schweikert, A. A1 - Flemig, Sabine A1 - Iwahata, D. A1 - Traub, Heike A1 - Hirata, T. T1 - Quantitative Imaging of Silver Nanoparticles and Essential Elements in Thin Sections of Fibroblast Multicellular Spheroids by High Resolution Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry T2 - Analytical Chemistry N2 - We applied high resolution laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS) with cellular spatial resolution for bioimaging of nanoparticles uptaken by fibroblast multicellular spheroids (MCS). This was used to quantitatively investigate interactions of silver nanoparticles (Ag NPs) and the distributions of intrinsic minerals and biologically relevant elements within thin sections of a fibroblast MCS as a three-dimensional in vitro tissue model. We designed matrix-matched calibration standards for this purpose and printed them using a noncontact piezo-driven array spotter with a Ag NP suspension and multielement standards. The limits of detection for Ag, Mg, P, K, Mn, Fe, Co, Cu, and Zn were at the femtogram (fg) level, which is sufficient to investigate intrinsic minerals in thin MCS sections (20 μm thick). After incubation for 48 h, Ag NPs were enriched in the outer rim of the MCS but not detected in the core. The localization of Ag NPs was inhomogeneous in the outer rim, and they were colocalized with a single-cell-like structure visualized by Fe distribution (pixel size of elemental images: 5 × 0.5 μm). The quantitative value for the total mass of Ag NPs in a thin section by the present method agreed with that obtained by ICP-sector field (SF)-MS with a liquid mode after acid digestion. PB - American Chemical Society, ACS Publications CY - Washington D.C. KW - Laser ablation KW - ICP-MS KW - Imaging KW - Nanoparticle KW - Cell KW - Spheroid PY - 2019 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/48719 AN - OPUS4-48719 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.9b02239 SN - 0003-2700 VL - 91 IS - 15 SP - 10197 EP - 10203 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany