TY - JOUR A1 - Bruno, Giovanni A1 - González-Doncel, G. A1 - Fernández, R. T1 - Primary and secondary creep in aluminum alloys as a solid state transformation JF - AIP Journal of Applied Physics N2 - Despite the massive literature and the efforts devoted to understand the creep behavior of aluminum alloys, a full description of this phenomenon on the basis of microstructural parameters and experimental conditions is, at present, still missing. The analysis of creep is typically carried out in terms of the so-called steady or secondary creep regime. The present work offers an alternative view of the creep behavior based on the Orowan dislocation dynamics. Our approach considers primary and secondary creep together as solid state isothermal transformations, similar to recrystallization or precipitation phenomena. In this frame, it is shown that the Johnson-Mehl-Avrami-Kolmogorov equation, typically used to analyze these transformations, can also be employed to explain creep deformation. The description is fully compatible with present (empirical) models of steady state creep. We used creep curves of commercially pure Al and ingot AA6061 alloy at different temperatures and stresses to validate the proposed model. KW - Creep KW - Aluminium KW - Grain boundaries KW - Precipitation KW - Computer modeling PY - 2016 DO - https://doi.org/10.1063/1.4961524 VL - 2016 IS - 120 SP - 085101-1 EP - 085101-9 PB - AIP Publishing AN - OPUS4-37965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -