TY - JOUR A1 - Steger, Simon A1 - Stege, H. A1 - Bretz, S. A1 - Hahn, Oliver T1 - Capabilities and limitations of handheld Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for the analysis of colourants and binders in 20th-century reverse paintings on glass T2 - Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy N2 - A non-invasivemethod has been carried out to show the capabilities and limitations of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for identifying of colourants and binders in modern reverse glass paintings. For this purpose, the reverse glass paintings “Zwei Frauen am Tisch” (1920–22), “Bäume” (1946) (both by Heinrich Campendonk), “Lofoten” (1933) (Edith Campendonk-van Leckwyck) and “Ohne Titel” (1954) (Marianne Uhlenhuth), were measured. In contrast to other techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession. In multi-layered paint systems, the front paint layer may no longer be accessible. The work points out the different spectral appearance of a given substance (gypsum, basic lead white) in reverse glass paintings. However, inverted bands, band overlapping and derivative-shaped spectral features can be interpreted by comparing the spectra fromthe paintingswith spectra frompure powders and pigment/linseed oil mock-ups. Moreover, the work focuses on this method's capabilities in identifying synthetic organic pigments (SOP). Reference spectra of three common SOP (PG7, PY1, PR83) were obtained from powders and historical colour charts.We identified PR83 and PY1 in two reverse glass paintings, using the measured reference spectra. The recorded DRIFTS spectra of pure linseed oil, gum Arabic, mastic, polyvinyl acetate resin and bees wax can be used to classify the binding media of the measured paintings. PB - Elsevier B.V. KW - DRIFTS KW - Painting KW - Non-invasive KW - Pigment PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/44023 AN - OPUS4-44023 SN - 1873-3557 VL - 195 SP - 103 EP - 112 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany