TY - JOUR A1 - Ringleb, F. A1 - Eylers, K. A1 - Teubner, T. A1 - Boeck, T. A1 - Symietz, Christian A1 - Bonse, Jörn A1 - Andree, Stefan A1 - Krüger, Jörg A1 - Heidmann, B. A1 - Schmid, M. A1 - Lux-Steiner, M. T1 - Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing T2 - Applied Physics Letters N2 - A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD. KW - Femtosecond laser KW - Physical vapor deposition KW - Indium KW - Molybdenum substrate KW - Microconcentrator solar cell PY - 2016 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/35602 AN - OPUS4-35602 SN - 0003-6951 VL - 108 IS - 11 SP - 111904-1 EP - 111904-4 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany