TY - JOUR A1 - Gunella, F. A1 - Kunisch, E. A1 - Bungartz, M. A1 - Maenz, S. A1 - Horbert, V. A1 - Xin, L. A1 - Mika, J. A1 - Borowski, J. A1 - Bischoff, S. A1 - Schubert, H. A1 - Hortschansky, P. A1 - Sachse, A. A1 - Illerhaus, Bernhard A1 - Günster, Jens A1 - Bossert, J. A1 - Jandt, K. D. A1 - Plöger, F. A1 - Kinne, R. W. A1 - Brinkmann, O. T1 - Low-dose BMP-2 is sufficient to enhance the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia T2 - The Spine Journal N2 - BACKGROUND CONTEXT: Bioresorbable calcium phosphate cement (CPC) may be suitable for vertebroplasty/kyphoplasty of osteoporotic vertebral fractures. However, additional targeted de- livery of osteoinductive bone morphogenetic Proteins (BMPs) in the CPC may be required to counteract the augmented local bone catabolism and support complete bone regeneration. PURPOSE: This study aimed at testing an injectable, poly (l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming cement (CPC) containing low-dose bone morphogenetic Protein BMP-2 in a sheep lumbar osteopenia model. STUDY DESIGN/ SETTING: This is a prospective experimental animal study. METHODS: Bone defects (diameter 5 mm) were generated in aged, osteopenic female sheep and filled with fiber-reinforced CPC alone (L4; CPC+ fibers) or with CPC containing different dosages of BMP-2 (L5; CPC+ fibers + BMP-2; 1, 5, 100, and 500g BMP-2; n=5 or 6 each). The results were compared with those of untouched controls (L1). Three and 9 months after the operation, structural and functional effects of the CPC (±BMP-2) were analyzed ex vivo by measuring (1) bone Mineral density (BMD); (2) bone structure, that is, bone volume/total volume (assessed by micro-computed tomography [micro-CT] and histomorphometry), trabecular thickness, and trabecular number; (3) bone formation, that is, osteoid volume/bone volume, osteoid surface/bone surface, osteoid thickness, mineralizing surface/bone surface, mineral Apposition rate, and bone formation rate/bone surface; (4) bone resorption, that is, eroded surface/bone surface; and (5) compressive strength. RESULTS: Compared with untouched controls (L1), CPC+ fibers (L4) and/or CPC+ fibers + BMP-2(L5) significantly improved all parameters of bone formation, bone resorption, and bone structure. These effects were observed at 3 and 9 months, but were less pronounced for some parameters at 9 months. Compared with CPC without BMP-2, additional significant effects of BMP-2 were demonstrated for bone structure (bone volume/total volume, trabecular thickness, trabecular number) and formation (osteoid surface/bone surface and mineralizing surface/bone surface), as well as for the compressive strength. The BMP-2 effects on bone Formation at 3 and 9 months were dose-dependent, with 5–100g as the optimal dosage. CONCLUSIONS: BMP-2 significantly enhanced the bone formation induced by a PLGA fiber-reinforced CPC in sheep lumbar osteopenia. A single local dose as low as ≤100g BMP-2 was sufficient to augment middle to long-term bone formation. The novel CPC+ BMP-2 may thus represent an alternative to the bioinert, supraphysiologically stiff polymethylmethacrylate cement presently used to treat osteoporotic vertebral fractures by vertebroplasty/kyphoplasty. PB - Elsevier Inc. KW - Bone regeneration KW - Computed tomography KW - Calcium phosphat cement KW - Large animal model sheep KW - Osteoporotic vertebral fracture PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/43237 AN - OPUS4-43237 SN - 1529-9430 SN - 1878-1632 VL - 17 IS - 11 SP - 1699 EP - 1711 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany