TY - CONF A1 - Bäßler, Ralph A1 - Keserovic, Amela A1 - Sobetzki, Joana A1 - Sarmiento Klapper, Helmuth A1 - Dimper, Matthias T1 - Materials evaluation for geothermal applications in different geothermal waters T2 - Proceedings of the world geothermal congress 2015 N2 - The corrosion behavior of carbon Steel and different high-alloyed metals including duplex and austenitic stainless steels as well as a nickel alloy have been evaluated in artificial geothermal fluids simulating the conditions in some locations with geothermal potential in Germany, as well as two sites in Indonesia. The suitability of low alloyed Steel UNS G41300, stainless steels UNS S31603 UNS S31803, UNS S32760 and super austenitic Steel UNSN08031 in these geothermal waters, investigated by electrochemical measurements and exposure tests, is limited. The nickel based alloy UNS N06059 shows excellent corrosion resistance against pitting corrosion. Excluding its high cost, it is a very good alternative to be used in the construction of geothermal facilities having highly sahne brines. Stainless and duplex steels exhibit a limited corrosion resistance concerning pitting and crevice corrosion. Besides the higher alloyed materials, also the low-alloyed Steel UNS G41300 could be employed as a constructional material for the geothermal power plant in non-saline environments with moderate pH, as long as the wall thickness of the material vs. corrosion rate is taken into account. T2 - World Geothermal Congress 2015 CY - Melbourne, Australia DA - 19.04.2015 KW - Localized corrosion KW - Stainless steel KW - Ni-based alloy KW - Geothermal energy PY - 2015 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/34750 AN - OPUS4-34750 SN - 978-1-877040-02-3 SP - paper 27011, S. 1 EP - 7 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany