TY - CONF A1 - An, Biwen Annie A1 - Kunte, Hans-Jörg A1 - Koerdt, Andrea A2 - Eibergen, N. A2 - Poulassichidis, T. T1 - Microbiologically Influenced Corrosion (MIC) by Halophilic (Salt-Loving) Nitrate and Sulfate-Reducing Microorganisms T2 - Corrosion 2021 N2 - The survey of Canadian shale sites showed a dominance of halophilic microorganisms, including Halomonas (HA). Nitrate-amended incubations of the field samples under high salinity (14.6% NaCl), revealed a dominance of HA (>72%) and an accumulation of nitrite. Nitrite accumulation directly inhibited the growth of SRB, thereby decreasing their souring and corrosion risks. However, accumulated nitrite may also contribute to iron corrosion, which will be tested by using different concentrations of nitrate as an electron acceptor to HA. Different salinities are further tested on HA strains supplemented with iron coupons to determine their effects on iron corrosion rates. HA incubated with separate cultures of corrosive methanogen and SRB were tested to determine whether a positive or adverse effect will occur between them. Lastly, analyses of iron coupons will be conducted using TOF-SIMS, FIB-SEM and EDS for corrosion product characterization T2 - Corrosion 2021 CY - Online Meeting DA - 19.04.2021 KW - MIC KW - Bacteria KW - Halophile KW - Corrosion KW - Environmental condition KW - Korrosion KW - High salinity PY - 2021 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/52479 AN - OPUS4-52479 UR - https://my.nace.org/PaperTrail/Authors/Submission.aspx?id=2914f145-7f8f-ea11-813a-005056a95a7c SP - Paper C2021-16284, 1 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany