TY - GEN A1 - Simon, Fabian T1 - Development of multi-layer SPE approaches for PFAS determination in surface water samples utilizing HR-CS-GFMAS N2 - Per- and polyfluoroalkyl substances (PFAS) have received global public attention because of their wide distribution in aquatic environments and potential adverse effects to humans and wildlife. Due to the lack of analytical standards and the enormous numbers of these compounds, current target-based methods (e.g., LC-MS/MS) are not suitable for the analysis of new/unknown PFAS and transformation products. Therefore, PFAS sum parameter analysis is becoming increasingly important. For PFAS determination of surface waters, solid phase extraction (SPE) is commonly implemented for clean-up and pre-concentration of samples. Thus, within this work, single-layer SPE methods (based on Strata™-X, Strata™-X-AW, Strata™-NH2 and Oasis-HLB) were investigated for maximum PFAS coverage utilizing extractable organically bound fluorine (EOF) analysis. Thereby, the optimization procedure relied on the analysis of 3 surface water samples in Berlin, Germany, which were affected by the effluent discharge of wastewater treatment plants. To analyse the SPE elution profiles for EOF and inorganic fluorine, high resolution-continuum source-graphite furnace molecular absorption spectroscopy (HR-CS-GFMAS) and ion chromatography (IC) were used, respectively. Highest EOF concentrations were achieved by using Strata-X/Strata-XAW as SPE sorbents and methanol as eluent. Furthermore, combinations of the most promising SPE sorbents were selected (X/XAW, XAW/X, HLB/X and WAX/GCB) to extract a wider range of PFASs. By comparing multi-layer SPE methods, lower EOF concentrations were obtained for all investigated combination phases compared to the analysed single phases. For the commercially available combination phase Strata-PFAS (WAX/GCB) for all three river water samples, lower EOF concentrations (1.5 times lower) were determined compared to Strata-X. The results have shown that single-layer SPE systems are currently superior compared to combination phases for PFAS sum parameter analysis. The multi-layer SPE methods need further optimization regarding appropriate sorbent combinations, loading volumes and elution conditions. The developed single-layer SPE methods can help to elucidate pollutions hotspots and discharge routes. T2 - Analytica Conference 2024 CY - Munich, Germany DA - 09.04.2024 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine KW - SPE PY - 2024 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/59890 AN - OPUS4-59890 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany