TY - GEN A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz T1 - Deciphering the non-classical Crystallization of transition metal phosphates (TMP) N2 - A crucial aspect of ensuring sustainable raw material utilization to meet global demand lies in the efficient recovery and reuse of critical elements and compounds. Phosphate, PO43-, and many transition metals e.g. Ni and Co are listed as critical raw materials (CRMs) due to their indispensable role in numerous industrial processes. However, these elements can also exert harmful environmental impacts, with phosphorus being a major contributor to anthropogenic eutrophication and transition metal ions acting as toxic pollutants, particularly in ground- and wastewaters. Typically, separate pathways have been considered to extract hazardous substances such as transition metals or phosphate, independently from each other. Here, we report the crystallization pathways of transition metal phosphate (TMP) compounds, M-struvite and M-phosphate octahydrate with M = Ni2+, Co2+, NixCo1-x2+, NH4MPO4∙6H2O, M3(PO4)2∙8H2O from aqueous solutions. The co-precipitation of these particular TMP compounds from industrial and agricultural wastewaters has high potential as a P- and 3d metal recovery route. For efficient extraction and transformation of the TMPs, a comprehensive understanding of their nucleation and crystallization pathways from aqueous solutions is required. While the crystallization mechanisms of magnesium or calcium phosphate-bearing phases have been researched for many decades (e.g. struvite, apatite), investigations into TMP materials are relatively scarce and often focus on the adsorption of transition metals on the surface instead of their actual incorporation in minerals. In our study, we investigated in detail the precipitation process of several Co and Ni phosphates using ex- and in-situ spectroscopic-, spectrometric- and diffraction-/scattering-based techniques. We show that the crystallization behavior of TMPs, indeed deviates from a classical crystallization paradigm and follows a non-classical multi-step pathway. Our work extends the understanding of TMP crystallization by elucidating the formation of amorphous precursors preceding the final crystalline phase This time-dependent transition of the transition metal precursor phases can be observed by electron-imaging/tomography depicting a progressively changing amorphous solids until their ultimate reconfiguration to a crystal (Figure 1). Here, the two-metallic NixCo1-x-mixtures deviated anomalously in their reaction kinetics, crystallization outcome and participation of both metals from their pure endmembers. By measuring the crystallization with in-situ X-ray scattering and pH using a flow-through setup geometry, a complex prolonged interplay among nucleating entities e.g. and amorphous or crystalline solids could be observed in the metal phosphate mixtures reaching equilibrium after almost two and a half hours (Figure 2). Our results provide a holistic perspective on the crystallization behavior of transition metal phosphate phases, shedding light on their unique nucleation and growth kinetics involving structural and chemical transformations of the intermediate phases. T2 - Granada Münster Discussion Meeting 2023 CY - Münster, Germany DA - 29.11.2023 KW - Non-classical crystallization theory KW - Transition metals KW - Phosphates PY - 2023 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/59007 AN - OPUS4-59007 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany