TY - JOUR A1 - Mehri Sofiani, F A1 - Chaudhuri, Somsubhro A1 - Elahi, S.A. A1 - Hectors, K. A1 - De Waele, W. T1 - Quantitative Analysis of the Correlation between Geometric Parameters of Pits and Stress Concentration Factors for a Plate Subject to Uniaxial Tensile Stress JF - Theoretical and Applied Fracture Mechanics N2 - The offshore environment is inherently corrosive. Consequently, pits may nucleate on exposed steel surfaces. Corrosion pits can be a source of crack initiation when the structure is subject to fatigue loading. The criticality of a corrosion pit with respect to the structural integrity depends on its shape and size and can be quantified using a stress concentration factor (𝐾𝑑). In this work, a parametric 3D finite element model is developed to perform stress analysis of a pitted plate subjected to uniaxial tensile stress. The model is used for an extensive parameter study in which 𝐾𝑑 is determined for various pit configurations. It is demonstrated that each one of the geometrical parameters holds a substantial influence on the location of the Most Critical Region (MCR). It is shown that 𝐾𝑑 increases as the pit gets narrower. Pits with an elliptical mouth yield higher 𝐾𝑑 values when the angle between the load direction and the pit mouth major axis increases. Moreover, 𝐾𝑑 increases with the increase in the localized thickness loss which is more pronounced for relatively wider pits. Finally, a regression model is presented for estimating 𝐾𝑑 based on the geometric parameters of a pit. KW - FEM KW - Corrosion KW - SCF KW - Pitting corrosion PY - 2023 DO - https://doi.org/10.1016/j.tafmec.2023.104081 SN - 0167-8442 VL - 127 SP - 1 EP - 27 PB - Elsevier Ltd. AN - OPUS4-58284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -