TY - CONF A1 - Chabrelie, A. A1 - Müller, Urs A1 - Scrivener, K.L. ED - Palomo, Á. ED - Zaragoza, A. ED - Agüí, J. C. L. T1 - Mechanisms of degradation of concrete by external sufate ions under laboratory and field conditions T2 - 13th International congress on the chemistry of cement - XIII ICCC (Proceedings) N2 - The durability of concrete is a major challenge for the construction, which devotes one third to one half of its annual investment to building maintenance. The lack of fieid data regarding concrete durability, especially in the case of exposure to Sulfate ions (“sulfate attack”) makes it dijficult to determine the appropriate fest methods andperformance criteria. Additionally, the increased use of sustainable blends (cement with mineral admixtures, typically slag from the iron industiy) suffers from a lack of experience regarding their long-term performance. Most results for sulfate resistance are derived from accelerated laboratoiy tests xvhere performance criteria are based only on macroscopic properties, especially expansion. To fill this gap and better widerstand the mechanisms of sulfate attack under real conditions, a parallel study of laboratoiy micro-concrete and fieid concrete samples under sulfate exposure was undertaken, focussing on microstructural changes in addition to the conventional macroscopic characterisation. Four exposure regimes were designed in the laboratoiy: full immersion (ponding), pH-control, semi-immersion and wet/diy cycles. Pure Portland blends and slag blends witli high level of slag replacement (70 wt.-%) were investigated. The exposure regime has been found to play a major role in the damage process. In ponding conditions, the damage process takes place in three stages characterised by a first period of induction, followed by surface damage thatfinally extends to the bulle of the material. Paradoxically, the w/c-ratio does not seem to have much impact on the ionic transport phenomena but might be more decisive in the microstructure mechanical strength against local stresses. The slag blends, considered as sulfate resistant in ponding exposure, revealed badperformances under wet/diy cycles. This beliaviour was attributed to poor proper physical resistance of the slag hydrates against diying. The fieid concretes selected for the comparison with the laboratoiy cases were partially buried in a sulfate-enriched soil in Argentina. A pure Portland blend and a slag blends with high level of slag replacement (80 wt.-%) were investigated. The submerged part of the samples could be compared to the laboratoiy ponding exposure, wliile the upper layer of the samples subjected to weathering could be compared to the laboratoiy wet/diy cycles exposure. The fieid obsen’ations tend to confirm the laboratoiy results and validate the fest settings. It has been underlined that a direct relationship between damage (e.g.; cracking/expansion) andphase assemblage was not evident. However, the study highlights that sulfate combination with the hydrates of the cement (e.g.; C-S-H) and with those of the slag would play a rote in the initiation of the expansion, which would be attributed to a swelling of the hydrates or to the precipitation offine ettringite after the Saturation level in sulfate of the hydrates has been reached. T2 - 13th International congress on the chemistry of cement - XIII ICCC CY - Madrid, Spain DA - 03.07.2011 KW - Sulfate attack KW - Exposure conditions KW - Concrete KW - Laboratory test KW - Field KW - Phase assemblage KW - Microstructure KW - XRD KW - SEM KW - SCM KW - Slag PY - 2011 SN - 978-84-7292-400-0 SP - 1 EP - 14 CY - Madrid AN - OPUS4-24810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -