TY - GEN A1 - Scharek, Vera T1 - Speciation analysis of environmental samples via ETV/ICP-MS N2 - Organotin compounds (OTCs) have been widely used in anti-fouling paints, pesticide formulations, and as stabilizers in polyvinyl chloride over the past century. In marine ecosystems, OTCs can cause severe damage to biodiversity, leading up to the extinction of vulnerable species. Due to the extensive use of tributyltin (TBT) as a biocide on ship hulls, it has been considered one of the most hazardous substances intentionally introduced into the aquatic environment. This resulted in a global ban on TBT-containing products in the 2000s. However, recent studies indicate the emerging presence of organotin pollutants. OTCs are known to persist and accumulate in marine sediments, posing a long-term threat to the environment. These harmful substances can be set free and dispersed even after several decades. Therefore, analyzing sediment probes is imperative for a thorough monitoring of pollution. However, species-specific analysis of OTCs at required concentration levels in complex environmental matrices remains challenging. Chromatographic systems are commonly used for their analysis, but the required sample preparation is time-consuming and prone to contamination and analyte loss. The coupling of electrothermal vaporization and inductively coupled plasma-mass spectrometry (ETV/ICP-MS) demonstrates high potential as a rapid, convenient, and chemical-saving scanning tool for environmental samples. This method enables the direct on-line fractionation of organic compounds from an inorganic fraction and provides element-specific detection at ultra-trace levels without complex sample preparation. Since OTCs are generally more toxic than ionic or elemental tin, analyzing them as a sum parameter is advantageous. Additionally, the determination of both organic and inorganic tin, rather than just organic tin, reveals valuable information about the fate of OTCs. The main challenge in obtaining accurate quantitative data using direct solid sampling techniques like as ETV/ICP-MS is applying a suitable calibration strategy. Our isotope dilution approach overcomes matrix effects in ETV/ICP-MS analysis and is compatible with commercial systems. T2 - Winter Conference on Plasma Spectrochemistry CY - Tucson, AZ, USA DA - 15.01.2024 KW - Organotin compounds KW - Sediment KW - Electrothermal Vaporization KW - Inductively coupled plasma-mass spectrometry PY - 2024 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/59895 AN - OPUS4-59895 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany