TY - CONF A1 - Hoffmann, Katrin A1 - Pauli, Jutta A1 - Resch-Genger, Ute T1 - New NIR fluorescence reference materials and quantum yield standards for standardization of fluorescence-based measurements N2 - Luminescence techniques are amongst the most commonly used analytical methods in the life and the material sciences due to their sensitivity and nondestructive character. All photoluminescence signals are, however, affected by wavelength-, polarization- and time-dependent instrument-related effects. Furthermore, substantial challenges to measure absolute luminescence intensities complicate the comparison of data recorded with different instruments and on the same instrument at different times. These problems can be easily resolved with fluorescence standards used for instrument performance validation (IPV) and determination of instrument-to-instrument variations, which allow to measure, quantify, and monitor the wavelength-dependent spectral responsivity for typically used instrument settings. For example, a set of liquid fluorescence standards, the BAM Kit F001-F005, and a ready-to-use glass-based fluorescence standard BAM F-012 developed and certified by BAM enable the characterization of many fluorescence parameters in the UV/vis wavelength range. For the increasingly used near infrared (NIR) region, standards and calibration tools are still very rare. Reliable spectral fluorescence standards and intensity or quantum yield standards are currently not available for the NIR, even though in biology, molecular imaging, and clinical diagnostics fluorescence labels absorbing and emitting in the long wavelength region beyond 650 nm are being increasingly used. This limitation hampers the reliability and comparability of fluorescence measurements in the NIR and calls for simple fluorescence standards for instrument characterization and for the quantification of fluorescence intensities and efficiencies to improve the comparability of the emission measurements in the NIR. This encouraged us to assess the potential of several NIR-emitting materials as spectral fluorescence standards, thereby extending the BAM Kit from the UV/vis into the NIR up to 950 nm. Moreover, we currently certify quantum yield standards for the UV/vis/NIR to improve the reliability of relative measurements of this spectroscopic key quantity particularly > 650 nm. These tools enable an instrument characterization, signal referencing, quality assurance, traceability, and method validation now also for wavelengths > 650 nm, thereby improving the reliability of fluorescence data in pharmaceutical research, medical and clinical diagnostics, material analysis, and environmental monitoring. T2 - 15th Conference on Methods and Applications in Fluorescence (MAF) CY - Brugge, Belgium DA - 10.09.2017 KW - Fluorescence reference materials KW - Quantum yield standard KW - Glass-based fluorescence standard PY - 2017 AN - OPUS4-41990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -