TY - CONF A1 - Diercks, Philipp A1 - Robens-Radermacher, Annika A1 - Unger, Jörg F. T1 - A hyper reduced domain decomposition approach for modeling nonlinear heterogeneous structures N2 - Many of today's problems in engineering demand reliable and accurate prediction of failure mechanisms of mechanical structures. Herein it is necessary to take into account the often heterogeneous structure on the fine scale, to capture the underlying physical phenomena. However, an increase of accuracy by dissolving the fine scale inevitably leads to an increase in computational cost. In the context of multiscale simulations, the FE2 method is widely used. In a two-level computation, the fine scale is depicted by a boundary value problem for a representative volume element (RVE), which is then solved in each integration point of the macro scale to determine the macroscopic response. However, the FE2 approach in general is computationally expensive and problematic in the special case of concrete structures. Here rather large RVEs are necessary to sufficiently represent the meso-structure, such that separation of scales cannot be assumed. Therefore, the aim is to develop an efficient approach to modeling nonlinear heterogeneous structures using domain decomposition and reduced order modeling. T2 - ECCOMAS Young Investigators Conference 2019 CY - Krakow, Poland DA - 01.09.2019 KW - Model order reduction KW - Proper orthogonal decomposition KW - Discrete empirical interpolation method KW - Multiscale KW - Domain Decomposition PY - 2019 AN - OPUS4-48942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -