TY - CONF A1 - Blankenhagel, Paul A1 - Wehrstedt, Klaus-Dieter A1 - Mishra, K. B. A1 - Steinbach, J. T1 - Prediction of organic peroxide fireball characteristics using CFD simulation T2 - Proceedings of the 8th European Combustion Meeting 2017 N2 - Single and multiple fireballs of di-tert-butyl peroxide are numerically investigated using ANSYS CFX. Calculations contain varying inlet conditions, scale-adaptive shear stress turbulence modeling and one-step combustion reaction on a three-dimensional hexahedral mesh. Time-resolved flame temperatures, sizes and thermal radiation are compared to experimental results. There, fireballs were generated by fire engulfment of steel drums containing 200 l substance. After a vigorous burning, the remaining peroxide forms single and multiple fireballs involving 10 % to 20 % of the initial amount. The comparison of all simulations and two selected experiments show the special numerical treatment required for organic peroxides. Finally, the numerical predictions of irradiance in 30 m distance to the fire show a good agreement for both experiments. This proves the use of CFD as an appropriate method for thermal hazard assessment and the prediction of safety distances for organic peroxide fireballs. T2 - 8th European Combustion Meeting 2017 CY - Dubrovnik, Croatia DA - 18.04.2017 KW - Organic peroxide KW - DTBP KW - Fireball KW - Steel drum KW - Simulation PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/39992 AN - OPUS4-39992 SN - 978-953-59504-1-7 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany