TY - CONF A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Churiaque, C. A1 - Sanchez-Amaya, J.M. T1 - High-power hybrid laser arc welding of thick materials with electromagnetic weld pool support N2 - In addition to the many advantages of deep penetration, increased welding speed and a low sensitivity to manufacturing tolerances such as gap and edge offset, the hybrid laser arc welding (HLAW) process is used increasingly in industrial applications such as shipbuilding or pipeline manufacturing. Nonetheless, thick-walled sheets with a wall thickness of 20 mm or more are still multi-pass welded using the arc welding process, due to increased process instability by increasing laser power. Welding at reduced speed, especially in a flat position, leads to an irregular formation of the root part such as dropping. The hydrostatic pressure exceeds the surface tension, which decreases with increasing seam width. In order to prevent gravity drop-outs, the use of a melt pool support is necessary. Usual weld pool supports such as ceramic or powder supports require time-consuming mechanical detachment. The electromagnetic weld pool support system, which is described in this study, operates without contact and based on generating Lorentz forces in the weld pool. An externally applied oscillating magnetic field induces eddy currents and generates an upward directed Lorentz force, which counteracts the hydrostatic pressure. This allows single-pass welds up to 30 mm by hybrid laser arc welding process with a 20-kW fibre laser. Moreover, it is favoured by the diminished welding speed the cooling rate which leads to an improvement of the mechanical-technological properties of the seams – the lower formation of martensite in the microstructure enables better Charpy impact toughness. The electromagnetic weld pool support extends the limitation of the laser hybrid welding process in the thick sheet area. By adapting the electromagnetic weld pool support to the laser and laser hybrid welding process, the application potential of these technologies for industrial implementation can be drastically increased. T2 - 23rd Technical Conference on Welding and Joining Technologies CY - Irun, Spain DA - 07.03.2023 KW - Laser hybrid welding KW - Thick-walled steel KW - Electromagnetic backing KW - High-power laser PY - 2023 AN - OPUS4-58613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -