TY - CONF A1 - Grimault de Freitas, Tomás T1 - State of the Art in the Qualification of Metallic Materials for Hydrogen Technologies N2 - The hydrogen economy is one of the main solutions for achieving climate neutrality in Europe. Metallic materials, predominantly steels, are the most common structural materials in the various components along the hydrogen supply chain. Ensuring their sustainable and safe use in hydrogen technologies is a key factor in the ramp-up of the hydrogen economy. This requires extensive materials qualification, however, most of the accepted, and standardised test methods for determining the influence of gaseous hydrogen on metallic materials describe complex and costly procedures that are only available to a very limited extent worldwide (e.g., autoclave technique). The hollow specimen technique is presented as an alternative method that can overcome the limitations of current techniques and complement them. To standardise the technique, a process has been initiated by ISO in 2021. Knowledge gaps for tests with the technique in hydrogen have been identified by DIN. The H2HohlZug project, which falls under the umbrella of TransHyDE, aims to address the identified knowledge gaps and provide a foundation for a comprehensive standardisation of the hollow specimen technique. T2 - E-World Energy & Water CY - Essen, Germany DA - 20.02.2024 KW - Hydrogen KW - Hydrogen Embrittlement KW - Hollow Specimen Technique KW - High-Pressure Gaseous Hydrogen KW - Standardisation KW - H2HohlZug KW - TransHyDE PY - 2024 AN - OPUS4-59564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -