TY - CONF A1 - Wu, Hongyi A1 - Hofmann-Böllinghaus, Anja ED - Makovická Osvaldová, L. ED - Hasburgh, L. E. ED - Das, O. T1 - Applying experimental determined kinetic parameters to the simulation of vegetation fire in the Fire Dynamics Simulator T2 - Wood & Fire Safety 2024 - Proceedings of the 10th International Conference on Wood & Fire Safety 2024 N2 - Although intense wildfire research has been done in the US and in Australia, it cannot be transferred directly to the situation in Europe as the local vegetation has a significant influence on the fire spread. The EU-funded project TREEADS and the so-called German pilot within the project are concentrating on wildfire in Europe. Extensive experimental research is done on local vegeta-tion in Germany and the experimental results are used to adjust the Fire Dynam-ics Simulator (FDS) to local vegetation as a fuel in the calculations. The particle model and the boundary fuel model are developed for the simulation of forest fires. Both models require the kinetic input for the dehydration, pyrolysis, and char oxidation process. This three-step simplified model describes the basic fuel combustion kinetic. Most published simulations use the default kinetic input of pine needles from FDS user manual. To adjust the simulation to local vegetation, the corresponding kinetic parame-ters have been experimental investigated. Samples of pine needles, moss and other falling leaves were collected, air dried and grinded into powder. The TG analysis of all these samples were done under different heating rate of 5, 10 and 20K/min. The activation energy and the corresponding pre-exponential factor were calcu-lated. The results show that fire spread depends significantly on the vegetation and comparison with small scale experiments show good agreement using the new kinetic parameters. The new model is applied to a larger scenario and will be compared to the results of large-scale experiments for further validation of the model. T2 - Wood and Fire Safety 2024 CY - Štrbské Pleso, Slovakia DA - 12.05.2024 KW - Forest KW - Simulation KW - FDS KW - Vegetation fire KW - Fire Dynamics Simulator KW - Kinetic parameters PY - 2024 SN - 978-3-031-59177-8 DO - https://doi.org/10.1007/978-3-031-59177-8_45 SP - 389 EP - 396 PB - Springer CY - Cham AN - OPUS4-60252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -