TY - JOUR A1 - Zavoiura, O. A1 - Resch-Genger, Ute A1 - Seitz, O. T1 - Reactive Quantum Dot-Based FRET Systems JF - Methods in Molecular Biology N2 - Oligonucleotide-templated reactions (OTRs) between two reactive hybridization probes allow for the detection of a DNA or RNA of interest by exploiting the target molecule as a catalyst of chemical reactions. The product of such a reaction commonly exhibits distinct fluorescence properties and can be detected by the means of fluorescence spectroscopy. The vast majority of OTR systems utilize organic dyes as fluorescent reporters. However, the use of brighter emitters, such as semiconductor quantum dots (QDs), has potential to improve the sensitivity of detection by providing brighter signals and permitting the use of probes at very low concentrations. Here we report an RNA-templated reaction between two fluorescently labeled peptide nucleic acid (PNA)-based probes, which proceeds on the surface of a QD. The QD-Bound PNA probe bears a cysteine functionality, while the other PNA is functionalized with an organic dye as a thioester. OTR between these probes proceeds through a transfer of the organic dye to the QD and can be conveniently monitored via fluorescence resonance energy transfer (FRET) from the QD to the Cy5. The reaction was performed in a conventional fluorescence microplate reader and permits the detection of RNA in the picomolar range. KW - Fluorescence KW - Nano KW - Particle quantum dot KW - FRET KW - Assay KW - Sensor KW - RNA-templated reactions KW - Bioconjugation KW - Synthesis KW - Dye KW - Click chemistry KW - Peptide nucleic acid KW - Quantum dots KW - RNA KW - Fluorescence spectroscopy PY - 2020 DO - https://doi.org/10.1007/978-1-0716-0243-0_11 VL - 2105 SP - 187 EP - 198 PB - Springer Sience+Business Media AN - OPUS4-50553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -