TY - CONF A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - In-situ probing of the dynamics of irreversibly adsorbed layers in PVME thin films N2 - For many years now, the so-called three layer model (free-surface, bulk-like, and adsorbed layers) has been commonly used, along with other parameters, to explain the deviations seen in glass transition and glassy dynamics for polymers confined into thin films, compared to their bulk value. Nevertheless, due to the hard accessibility of the adsorbed layers in supported films, little is known about the nature of their dynamics and how they really influences the overall dynamics of the thin films. Here, the irreversibly self-assembled adsorbed layer of a low MW Poly (vinyl methyl ether) (PVME) is solvent-leached from a 200 nm film. The thickness and topography of this layer is checked with Atomic Force Microscopy (AFM), to insure no dewetting and low roughness. Further, the dynamics of the adsorbed layer is then in-situ probed with Broadband Dielectric Spectroscopy (BDS). A recently developed nano-structured capacitor arrangement was employed; where a silicon wafer with nanostructured SiO2 nano-spacers, with heights of 35 nm, is placed on top of a thin film spin coated on an ultra-flat highly conductive silicon wafer. All results will be discussed in detail and quantitatively compared to our recent work on the glassy dynamics of PVME thin films (50 nm- 7nm), where BDS measurements showed two thickness-independent relaxation processes. The first process was assigned to the -relaxation of a bulk-like layer. Whereas the second process showed a different temperature dependence and was ascribed to the relaxation of polymer segments adsorbed at the substrate. To our knowledge, this is the first in-situ study of the dynamics of an irreversibly adsorbed layer. T2 - 8th International Discussion Meeting Relaxation in Complex Systems CY - Wisla, Poland DA - 23.07.2017 KW - Thin films PY - 2017 AN - OPUS4-41190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -