TY - CONF A1 - Abraham, O. A1 - Niederleithinger, Ernst A1 - Chapeleau, B. A1 - Klikowicz, P. A1 - Brühwiler, E. A1 - Bassil, A. A1 - Wang, Xin A1 - Chakraborty, J. A1 - Bayane, I. A1 - Leduc, D. A1 - Salamak, M. A1 - Katunin, A. A1 - Sörensen, J. D. T1 - Addressing the need to monitor concrete fatigue with non destructive testing: preliminary results of infrastar European project N2 - Fatigue is one of the most prevalent issues, which directly influences the service life expectancy of concrete structures. Fatigue has been investigated for years for steel structures. However, recent findings suggest that concrete structures may also be significantly subjected to the fatigue phenomena that could lead to premature failure of certainfatigue prone structural elements. To date, fatigue of reinforced concrete has been given little focus. and Kknowledge on the influence factors and durability/capacity effects on this material should be improved. Current technological means to measure fatigue in civil structures like bridges and wind turbines (both onshore and offshore) are outdated, imprecise and inappropriate. Meanwhile, this topic has got much more attention as dynamic loading on concrete structures plays an increasing role, e.g. in bridges with increasing traffic and heavier trucks, in wind energy production due to inherent vibrations e.g. in offshore wind turbine support structures affected by wind and waves. The European Innovative Training Networks (ITN) Marie Skłodowska-Curie Actions project INFRASTAR (Innovation and Networking for Fatigue and Reliability Analysis of Structures - Training for Assessment of Risk) provides research training for 12 PhD students. The project aims to improve knowledge for optimizing the design of new structures as well as for more realistic verification of structural safety and more accurate prediction of the remaining fatigue lifetime of existing structures. First, the INFRASTAR research framework is detailed. Then it will be exemplified through the presentation of the major results of the four PhD students involved in the work package dealing with auscultation and monitoring. This includes the development and improvement of Fiber Optics (FO) and Coda Wave Interferometry (CWI) for crack sizing and imagery, new sensor technologies and integration, information management, monitoring strategy for fatigue damage investigation and lifetime prediction. T2 - ASNT SMT/NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.8.2018 KW - Concrete KW - Fatigue KW - Non-destructive testing KW - Reliabiilty PY - 2018 AN - OPUS4-45862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -