TY - CONF A1 - Sklodowska, Anna A1 - Baensch, Franziska A1 - Lay, Vera A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Casten T1 - Acoustic emission monitoring for engineered barriers in nuclear waste disposal T2 - Proceedings of the 11th European Workshop on Structural Health Monitoring (EWSHM 2024) N2 - To safely dispose of nuclear waste in underground facilities, engineered barrier systems are needed to seal shafts and galleries. The material used in these barriers must be adapted to the host rock parameters. Shrinking and cracking must be avoided to provide a barrier with almost zero permeability. For repositories in salt rock environments, several types of salt concrete (SC) are possible construction materials. Within the project SealWasteSafe, we compared the behavior of an innovative alkali-activated material (AAM) with standard SC in their hydration and hardening phase. To monitor the microstructural changes within the two materials SC and AAM, acoustic emission (AE) signals have been recorded for up to ~250 days on 340-litercubic specimens. The phenomenon of AE is defined as the emission of elastic waves in materials due to the release of localized internal energy. Such energy release can be caused by the nucleation of micro-fracture, e.g., in concrete while curing or when exposed to load. The occurrence of AE events gives first rough indications of microstructural changes and potentially occurring cracking and thus, provides insights for structural health monitoring (SHM). The results show, that for the first 28 days after casting, less AE activity was detected in the AAM compared to SC. After 61 days, in the AAM material, the number of AE events exceeded those observed in the SC. However, the majority of the AE detected and located in AAM was related to surface effects, and not to microstructural changes or occurring cracks within the bulk volume. Additionally, the source location analysis indicated, that despite lower activity in SC, we observed some clustering of the events. In contrast, in AAM, the activity inside the specimen is randomly distributed over the whole volume. The monitoring results help to estimate the material’s sealing properties which are crucial to assess their applicability as sealing material for engineered barriers. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 11.06.2024 KW - Endlager KW - Barriere KW - AAM KW - Akustische Emission PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604699 UR - https://www.ndt.net/article/ewshm2024/papers/768_manuscript.pdf DO - https://doi.org/10.58286/29834 SN - 1435-4934 SP - 1 EP - 7 PB - NDT.net AN - OPUS4-60469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -