TY - CONF A1 - Seher, Julia A1 - Rübner, Katrin A1 - Müller, Constanze A1 - Martin, F. A1 - Pniok, N. A1 - Dreisow, B. ED - Döring, I. ED - Villagran Zaccardi, Y. ED - Müller, A. T1 - Lightweight aggregates made from construction and demolition waste - Application in lightweight concrete and mortars T2 - Proceedings of the V International Conference Progress of Recycling in the Built Environment N2 - Heterogeneous construction and demolition waste can be used as raw material to produce lightweight aggregates (LWA) similar to expanded clays. In the joint research project “REALight”, LWA were produced from masonry rubble in a thermal expanding process using a pilot production plant with a rotary kiln. Our research focuses on the characterisation of the novel LWA and their use in different hydraulically bound applications. Infra-lightweight concrete (ILC) was produced with the novel LWA, which accounts for two thirds of total aggregate volume, and Celitement, which is a hydraulic binder with a low carbon footprint. Its dry bulk density is ≤ 800 kg/m³. Strength and durability properties are comparable to ILC data from the literature. Lime-based repair mortars (LRM) containing LWA are beneficial for sandstone conservation due to their similar properties regarding porosity, water absorption and strength. A two-layer repair mortar system, which consists of a filling mortar to fill large voids and a covering mortar to modulate the surface texture to the historic sandstone, was developed. In our contribution, we present results of the LWA characterisation according to the European standard EN 13055:2016. Requirements and challenges of the use of the novel LWA in ILC and LRM are discussed. T2 - V International Conference Progress of Recycling in the Built Environment CY - Weimar, Germany DA - 10.10.2023 KW - CDW recycling KW - Lightweight aggreagtes KW - Lightweight concrete KW - Masonry rubble KW - Repair mortar PY - 2023 SN - 978-2-35158-238-1 VL - PRO 137 SP - 85 EP - 92 PB - RILEM Publications S.A.R.L. CY - Champs-sur-Marne, Frankreich AN - OPUS4-58991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -