TY - CONF A1 - Beyer, Sebastian A1 - Rothfahl, Kevin A1 - Chapartegui, Ander A1 - Emmerling, Franziska A1 - Schneider, Rudolf T1 - Colloidal metalorganic frameworks as novel biofunctional nanoparticles for immunoassay applications N2 - Metal-organic framework (MOF) colloids have unique features that render them ideal signalling agents for realizing advanced immunoassay-based detection systems. MOFs are porous coordination polymers of metal nodes and organic linkers. The pore size of MOFs can be engineered and tailored to allow specific host (MOF) and guest (analyte) interactions. The particle sizes of the colloidal MOF can be tailored by employing methods from colloidal chemistry in wet synthesis. The adaption of established Layer-by-Layer polyelectrolyte coating protocols [1] allows equipping colloidal MOF particles with a nanometer thin polyelectrolyte membrane. This polyelectrolyte membrane serves as an interface for antibody binding. These biofunctional MOF nanoparticles have shown a strong immuno-binding that is sufficient for solid state immunoassays. Our current research addresses the design of luminescence encoded colloidal particle libraries by adjusting the ratios of e.g. Terbium (green) and Europium (red) metal nodes in mixed lanthanide based MOF-76. These mixed lanthanide MOF-76 particles are envisioned to allow multiplexed immuno-detection of endocrine disruptors such as bisphenol A. In addition we investigate the detection of analytes that do not allow the production of antibodies due to their inherent properties. Such “difficult analytes” have a strong hydrophobicity or are very small or highly toxic molecules. One example is the common plasticizer dioctylphthalate that is also a potent endocrine disruptor. MOF colloids can address this issue by specific host (MOF) : guest (analyte) interactions that result in analyte-specific colour change or exciplex-based fluorescence emission. Our overall aim is to develop methodologies that allow parallel sensing of two endocrine disruptors (e.g. bisphenol A & phthalates) by simultaneous immuno-detection and MOF:analyte specific interactions. T2 - BioSensor 2017 - 1st European and 10th German BioSensor Symposium CY - Potsdam, Germany DA - 20.03.2017 KW - MOFs KW - Immunoassay KW - Nanoparticles PY - 2017 AN - OPUS4-43522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -